
- casa
- >
notícia
Tubos cerâmicos corrugados especiais, tubos metalocerâmicos e tubos de vidro para instrumentos analíticos, adequados para diversos modelos de XRD, XRF, analisadores de cristal e instrumentos de orientação, no mercado nacional e internacional. Um tubo de raios X é um dispositivo eletrônico a vácuo que gera raios X por impacto de elétrons em alta velocidade sobre um material-alvo metálico. Sua estrutura, princípio e aplicação envolvem diversas características técnicas. 1. Estrutura básica do tubo de raios X (1) Cátodo (fonte de emissão de elétrons) Composto por filamento de tungstênio, o tubo de raios X aquece e emite elétrons após ser ligado, sendo envolvido por uma tampa de foco (cabeça catódica) para controlar a direção do feixe de elétrons. A temperatura do filamento é de cerca de 2000 K, e a emissão de elétrons é regulada pela corrente. (2) Ânodo (material alvo) Geralmente, metais de alto ponto de fusão (como tungstênio, molibdênio, ródio, etc.) são usados para suportar bombardeios de elétrons de alta energia e gerar raios X. Contém cabeça de ânodo (superfície alvo), tampa de ânodo, anel de vidro e alça de ânodo, responsáveis pela dissipação de calor (por radiação ou condução) e absorção de elétrons secundários. (3) Invólucro e janela de vácuo A estrutura de vidro ou cerâmica mantém um ambiente de alto vácuo (não inferior a 10 ⁻⁴ Pa) para evitar o espalhamento de elétrons. Os materiais das janelas exigem baixa absorção de raios X, geralmente utilizando folhas de berílio, alumínio ou vidro Lindemann. 2. Princípio de funcionamento do tubo de raios X (1) Aceleração e Impacto de Elétrons Os elétrons emitidos pelo filamento catódico são acelerados por alta voltagem (na faixa de quilovolts a megavolts) e colidem com o material alvo do ânodo. O processo de conversão da energia cinética eletrônica em raios X inclui: Bremsstrahlung: Raios X de espectro contínuo liberados quando os elétrons desaceleram ou desviam. Radiação característica: Raios X (como linhas Kα e Kβ) liberados por transições de elétrons na camada interna do material alvo. (2) Conversão e eficiência energética Apenas cerca de 1% da energia do elétron é convertida em raios X, e o restante é dissipado na forma de calor, exigindo resfriamento forçado (como um projeto de ânodo rotativo). 3. Classificação e cenários de aplicação de tubos de raios X (1) Gerando meios eletrônicos Tubo inflável: um tipo antigo que depende da ionização de gás para gerar elétrons, com baixa potência e vida útil curta (hoje obsoleto). Válvula de vácuo: O ambiente moderno de alto vácuo melhora a eficiência e a estabilidade eletrônica. (2) Por finalidade Na área médica, os tubos de raios X para diagnóstico (como exames odontológicos e de mama) e terapêutico (como radioterapia) geralmente usam ânodos rotativos para aumentar a densidade de potência. Ensaios industriais: ensaios não destrutivos, análise de estrutura de materiais, etc., com foco em alta penetração (raios X duros). (3) De acordo com o método de resfriamento Ânodo fixo: estrutura simples, adequada para cenários de baixa potência. Ânodo rotativo: a superfície alvo gira em alta velocidade (até 10.000 revoluções por minuto) para melhorar a dissipação de calor e suportar alta potência de saída. 4. Características de desempenho e limitações dos tubos de raios X (1) Vantagens Baixo custo, tamanho compacto, fácil operação, adequado para testes médicos e industriais de rotina. Ajuste flexível de materiais alvo (como tungstênio, molibdênio, cobre) para atender a diferentes necessidades energéticas. (2) Limitações Brilho e colimação fracos, ângulo de divergência de raios X elevado, exigindo colimadores adicionais. O espectro de energia é contínuo e contém linhas características, exigindo filtragem ou monocromatização (como o uso de filtros de níquel para remover as linhas de Kβ). 5. Comparação entre tubos de raios X e fontes de radiação síncrotron (1) Brilho e fluxo Tubo de raios X: Baixo brilho, adequado para testes de rotina. Fonte de luz de radiação síncrotron: com brilho de 106 a 1012 vezes maior, adequada para pesquisas de ponta, como nanoimagem e cristalografia de proteínas. (2) Características espectrais Tubo de raios X: Linhas características discretas + espectro contínuo, faixa de energia limitada pela tensão de aceleração. Radiação síncrotron: amplo espectro contínuo (do infravermelho aos raios X fortes), ajustável com precisão. (3) Características do tempo Tubo de raios X: Pulsos contínuos ou de nível de microssegundos (alvo giratório). Radiação síncrotron: pulsos de nível de femtossegundos, adequados para estudar processos dinâmicos, como reações químicas. 6. Parâmetros técnicos do tubo de raios X (1) Tipos de materiais alvo opcionais: Cu, Co, Fe, Cr, Mo, Ti, W, etc. (2) Tipo de foco: 0,2 × 12 mm2 ou 1 × 10 mm2 ou 0,4 × 14 mm2 (foco fino) (3) Maior potência de saída: 2,4 kW ou 2,7 kW De modo geral, os tubos de raios X dominam áreas como diagnóstico médico e testes industriais devido à sua praticidade e economia, mas são limitados por gargalos de desempenho. Para cenários que exigem alta resolução e alto brilho (como pesquisas científicas de ponta), tecnologias avançadas como fontes de radiação síncrotron precisam ser utilizadas. As futuras direções de desenvolvimento incluem a melhoria da eficiência de conversão de energia, a otimização de estruturas de dissipação de calor e o desenvolvimento de fontes de raios X miniaturizadas.
Dandong Tongda Technology Co., Ltd. é uma empresa profissional que produz produtos de raio-X. Seu principal produto são instrumentos de análise de raio-X e, em 2013, tornou-se a empreiteira do projeto para o National Major Scientific Instrument and Equipment Development Special X-ray Single Crystal Diffraction Instrument do Ministério da Ciência e Tecnologia da China. Nossa empresa adere aos princípios de cliente em primeiro lugar, produto em primeiro lugar e serviço em primeiro lugar, insiste em pessoas orientadas e tem uma forte equipe de tecnologia. Estamos comprometidos em fornecer aos usuários produtos de alta tecnologia da mais alta qualidade com tecnologia avançada e fornecer forte suporte e serviços aos usuários com consultoria técnica eficiente e instituições de serviço pós-venda.
Cientistas liderados pela NTU Cingapura desenvolveram e simularam um novo método de economia de energia que pode produzir raios X altamente focados e controlados com precisão, mil vezes mais fortes que os métodos convencionais.
A intensidade de raios X de testes não destrutivos em um ponto no espaço é a soma do número de fótons e do produto de energia sobre uma área unitária perpendicular à direção de propagação dos raios X em unidade de tempo.
Na análise de raios X, um instrumento usado para medir o ângulo entre um feixe de raios X incidente e um feixe de raios X difratado. O difratômetro mapeia automaticamente a variação da intensidade de difração com o ângulo 2θ.
O difratômetro de raios X policristalino, também conhecido como difratômetro de pó, é geralmente usado para medir materiais em pó, metal policristalino ou polímero.
As condições de potência dependem do tubo de raios X como material alvo e tipo de foco. Embora os alvos de Cu sejam amplamente utilizados para difração, o uso de alvos de Cu para análise de austenita residual não é recomendado devido à forte fluorescência dos materiais à base de ferro.
Pela difração de raios X do material e análise do seu padrão de difração, são obtidas informações como a composição do material, a estrutura ou morfologia dos átomos ou moléculas internas.
A difração de raios X (XRD) é um meio de pesquisa para obter informações como a composição de um material, a estrutura ou forma de um átomo ou molécula interna, analisando seu padrão de difração por meio da difração de raios X.
Usando o princípio da difração de raios X, o ângulo de corte de monocristais naturais e artificiais é determinado com precisão e rapidez, e a máquina de corte é equipada para corte direcional dos referidos cristais.